Radical Induced Regio- and Stereoselective Ring-Opening of gem-Difluorocyclopropanes. Synthesis of the (E)-Difluoroallylic System

Tsutomu MORIKAWA, Masayuki UEJIMA, and Yoshiro KOBAYASHI*
Tokyo College of Pharmacy, 1432-1 Horinouchi, Hachioji,
Tokyo 192-03

The radical induced regioselective ring-opening of gemdifluorocyclopropanes via deoxygenation or deiodination gave (E)difluoroallylic compounds stereoselectively.

The free-radical mediated carbon-framework transformation is increasingly being used in organic synthesis, and highly regio-, stereo- and chemoselective radical processes are of current interest. 1) It is known that cyclopropylmethyl radicals undergo β -C-C bond cleavage to afford 3-butenyl radicals. $^{2)}$ selectivity of their ring-openings depends on the substituent on the cyclopropane ring and reaction conditions (kinetic control vs. thermodynamic control). 3) An E/Z-stereoisomeric mixture of the product is formed in relatively low selectivity when the substituent is present at the radical center formed initially. 4) As part of a program directed at the ring-opening reactions of gem-difluorocyclopropanes, 5) we made a detailed examination of their ring-opening under free-radical conditions, aiming to disclose the regio- and stereoselectivity of the ring-opening. To date, there has been only reported ring-opening of the most simple case, in which the reaction of 1,1-difluoro-2-(bromomethyl)cyclopropane with tributyltin hydride (n-Bu₃SnH) gave 3,3-difluoro-1-butene, exclusively.⁶⁾ The present paper reports the stereoselective synthesis of the (E)-difluoroallylic system via radical promoted regioselective ring-opening of gem-difluorocyclopropane derivatives ($\frac{1}{2}$ or $\frac{2}{2}$).

$$R^{1}$$
 R^{3}
 R^{2}
 R^{3}
 R^{3}
 R^{2}
 R^{3}
 R^{3}
 R^{2}
 R^{3}
 R^{3}
 R^{2}
 R^{3}
 R^{3}
 R^{4}
 R^{2}
 R^{3}
 R^{4}
 R^{3}
 R^{4}
 R^{4}
 R^{3}
 R^{4}
 R^{4

We chose O-thiocarbonylimidazolide derivatives ($\underline{1}$) and iodides ($\underline{2}$) as starting materials for our radical mediated ring-opening. Difluorocyclopropylmethanols ($\underline{5}$) was prepared from the corresponding allyl acetates ($\underline{4}$) by the addition of difluorocarbene (ClCF $_2$ COONa, 170 °C) followed by alkaline hydrolysis. According to Barton's procedure, 0-thiocarbonylimidazolides ($\underline{1}$) were obtained in good yields

Table 1. The Reaction of Difluorocyclopropanes ($\underline{1}$ and $\underline{2}$) with n-Bu₂SnH

Entry	Difluorocyclopropane	Product	Yield/%
1	Ph OCN N trans-1a	F F (E)-3a	83
2	Ph OCN N F F S cis-1b	Ph F F (E)-3b	77
3	Ph OCN N 5 F F trans-1c	Ph 🔨 F 3 _c c	45
4	+co/ F F S cis-1d	↑CO F F F (E)-3a	62
5	F F trans-2a	(E)-3 <u>̃</u> α	83
6	Ph i cis-2b	(E)-3b	74
7	n-Hex F F trans-2e	F F n-Hex (E)-3e	62
8	Ph Ph	F F (E)-3f	69
9	F F trans-2g	Ph\\F F 3g	89
10	F F trans-2c	3 <u>c</u>	63

Chemistry Letters, 1988

(73% - 95%) on treating $\underline{5}$ with 1,1'-thiocarbonyldiimidazole. The iodination of mesylates of $\underline{5}$ afforded iodides ($\underline{2}$).

When trans-difluorocyclopropane ($\underline{1a}$) was reacted with n-Bu $_3$ SnH (1.1 equiv.) in the presence of a catalytic amount of azobisisobutyronitrile (AIBN, 0.1 equiv.) in benzene at reflux temperature for 4 h, only (E)-3,3-difluoro-7-phenyl-4-heptene ($\underline{3a}$) was obtained in 83% yield. Under the same conditions, cis-cyclopropane ($\underline{1b}$) underwent selective ring-opening to give (E)- $\underline{3b}$ in 77% yield. Similar regio- and stereoselective ring-opening was also observed in the reaction of iodides ($\underline{2}$) as the substrates. Both trand- $\underline{2a}$ and cis- $\underline{2b}$ provided good yields of (E)-difluoroallylic compounds ($\underline{3a}$ and $\underline{3b}$, respectively). The results are shown in Table 1. No regio- or stereoisomer was detected in any case.

In contrast to the regiochemical complexity in the ring-opening of non-fluorinated cis- and trans-cyclopropanes, 3) a CF $_2$ group shows the remarkable effect on the regioselectivity of homolytic cleavage of substituted gem-difluorocyclo-propanes (C $_2$ -C $_3$ scission). Neither substitution on C $_3$ by an alkyl or aryl group nor the stereochemical relationship of the substituents between C $_2$ and C $_3$ affected the regioselectivity of ring-openings of $\underline{1}$ and $\underline{2}$.

The high (E)-stereoselectivity observed here can be rationalized by a consideration of the favored transition state $\underline{6E}$: steric repulsion of R³ with the cyclopropane ring disfavors the transition state $\underline{6Z}$. Since the stereochemical relationship of the substituents on C₂ and C₃ has no effect on the stereoselectivity of ring-opening, it is not likely that steric interactions between R²(R¹) and R³ would contribute to transition state conformation.

In conclusion, a significant preference for ring-opening (c_2-c_3 scission) and the steric demands of the cyclopropane ring in the transition state permit this radical process to give the (E)-difluoroallylic system. Fluorine substitutions for hydrogens have been used to improve the biological activity of organic compounds in medicinal chemistry. Use of this radical induced ring-opening provides one means for the stereoselective introduction of fluorine substitutions to the allylic position, starting from allyl acetate with homologation and migration of the double bond.

References

1) D. J. Hart, Science, $\underline{223}$, 883 (1984); B. Giese, Angew. Chem., Int. Ed. Eng., $\underline{24}$, 553 (1985); B. Giese, Radicals in Organic Synthesis: Formation of Carbon-Carbon

1410 Chemistry Letters, 1988

Bonds, Pergamon Press, Oxford (1986); M. Ramaiah, Tetrahedron, 43, 3541 (1987).

- 2) P. de Mayo, Rearrangements in Ground and Excited States, 1, 227 (1980).
- 3) For example, in the ring-opening reaction of 2-alkyl-substituted cyclopropyl-methyl radicals cis-isomers (\underline{k}) give thermodynamically favored secondary alkyl radical ($\underline{1}$). On the other hand, their trans-isomers (\underline{m}) give the primary alkyl radical (\underline{n}) under conditions of kinetic control; when conditions of thermodynamic control are employed, the formation of secondary alkyl radical predominates; see P. M. Blum, A. G. Davies, M. Pereyre, and M. Patier, J. Chem.

$$\bigvee_{\underline{k}}^{R} \longrightarrow \bigvee_{\underline{l}}^{R} R' \quad , \quad \bigvee_{\underline{m}}^{R} R \longrightarrow \bigvee_{\underline{n}}^{R} R'$$

Research (S), 1980, 110; A. L. J. Beckwith and G. Moad, J. Chem. Soc., Perkin Trans. 2, 1980, 1473; P. S. Marino and E. Bay, J. Org. Chem., 45, 1763 (1980); M. Ratier, M. Pereyre, A. G. Davies, and R. Sutcliffe, J. Chem. Soc., Perkin Trans. 2, 1984, 1907.

4) For example, $n-Bu_3SnH$ E: Z=2.2:1

see Ref. 2, p.230 and reaction examples in Ref. 3.

- 5) Y. Kobayashi, T. Morikawa, A. Yoshizawa, and T. Taguchi, Tetrahedron Lett., 22, 5297 (1981); Y. Kobayashi, T. Morikawa, and T. Taguchi, Chem. Pharm. Bull., 31, 2616 (1983); T. Taguchi, T. Takigawa, Y. Tawara, T. Morikawa, and Y. Kobayashi, Tetrahedron Lett., 25, 5689 (1984).
- 6) W. R. Dolbier, Jr., B. H. Al-Sader, S. F. Sellers, and H. Koroniak, J. Am. Chem. Soc., 103, 2138 (1981).
- 7) Y. Kobayashi, T. Taguchi, T. Morikawa, T. Takase, and H. Takanashi, J. Org. Chem., 47, 3232 (1982).
- 8) D. H. R. Barton, R. S. H. Motherwell, and W. B. Motherwell, J. Chem. Soc., Perkin Trans. 1, 1981, 2363 and references cited therein.
- 9) The yields of $\underline{2}$ from corresponding $\underline{5}$ are 34%-91%. The low yield (16%) of cis- $\underline{2b}$ is probably due to the steric congestion between R² and R³.
- 10)(E)- $\frac{3a}{3}$: ¹H NMR (CDCl₃) δ =0.94 (3H, t, J=7.5 Hz), 1.87 (2H, tq, J=15.6 and 7.5 Hz), 2.42 (2H, m), 2.73 (2H, t, J=7.74 Hz), 5.54 (1H, dtt, J=15.76, 10.9, and 1.4 Hz), 6.08 (1H, dtt, J=15.76, 6.75, and 2.6 Hz), 7.16-7.30 (5H, m); ¹⁹F NMR (CDCl₃, benzotrifluoride as an internal standard) δ =-34.8 (2F, td, J=15.6 and 10.9 Hz); IR (CCl₄) 3040, 2990, 2945, 1675, 1600, 1495 cm⁻¹; MS m/z 210 (M⁺).
- 11)(E)-3b: ¹H NMR (CDCl₃) δ =1.75 (3H, dtd, J=6.67, 3.32, and 1.71 Hz), 1.78-1.96 (4H, m), 2.65 (2H, t, J=7.47 Hz), 5.54 (1H, dtq, J=15.65, 11.0, and 1.71 Hz), 6.04 (1H, dqt, J=15.65, 6.67, and 2.72 Hz), 7.16-7.30 (5H, m); ¹⁹F NMR (CDCl₃) δ =-32.0 (2F, m); IR (CCl₄) 3040, 2960, 2930, 1680, 1455 cm⁻¹; MS m/z 210 (M⁺).
- 12)R. Filler and Y. Kobayashi, Biomedicinal Aspects of Fluorine Chemistry, Kodansha Ltd. (Tokyo), Elsevier Biomedical Press (1982).

(Received May 23, 1988)